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We investigate, by the method developed in [l], the forced oscillations with 
a sliding regime range of a two-mass system with elastic connection between 
the elements, impacting a fixed stop. The system being considered is a dyna- 

mic model for a number of vibrational mechanisms. Force-d oscillations with 
a sliding regime range of a system with shock interactions are periodic motions 
accompanied by a period of an infinite succession of instantaneous collisions 
of two fixed elements of the model [2]. Within the framework of conditions 
of roughness of the parameter space [ 31, in this paper we study by the method 
of [l] periodic motions with a sliding regime range of a two-mass system with 
a stop. This problem was posed because in real systems the velocity recovery 
factor H changes from shock to shock, mainly taking small values (0, 0.2). 
At the same time, the regions of realizability of one-impact oscillations, in 
practice the most essential ones among motions with a finite number of inter- 
actions over a period, narrow down sharply as R decreases and becomes very 
small even for R < 0.6 [4]. Thus, the stability of the given operation can be 
ensured by a law of motion which is independent or weakly dependent on R 

( l ) (see footnote on the next page). By virtue of what has been said above, 
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finite-impact periodic modes are little suitable for this purpose. Regions, deli- 
neated in the parameter space of the model being considered, of existence of 

stable periodic motions with a sliding regime range have proved to be suffici- 
ently broad. By virtue of the adopted approximation of the sliding regime, the 
dynamic characteristics of these motions do not depend upon I?. The circum- 

stances mentioned confirm the practical value of motions with a sliding regime 

range in dynamic systems with impact interactions. 

1. Equation8 of motion rnd point mapping. The modelwe have cho- 
sen to investigate is a system of two masses m,and ma joined by a spring with a linear 
characteristic c. On each mass there acts a constant force PI and Pa , respectively. 

The motion of mass m,is restricted by a fixed barrier on contact with which a shock 
interaction takes place, characterized by the Newton hypothesis. Collisions between 

mass m,,which is subject to the influence of an external harmonic force E’ sin Qt, and 
mass m,, as well as the fixed barrier, do not occur. The displacements 7 of mass m, and 

5 of mass m2 are measured from the surface of the stop in the one direction such that 
tl >r! in the time interval between collisions in the system. We introduce the dimen- 

sionless variables and parameters 

y = m,fA2q i F, x = m,@ (5 -j- P2c-') i F, z = Ot 
v2 = c/m2Q2, P = (PI -I- P2) i F, p = m, i in2 

Then under assumptions usual to the given class of problems the behavior of the model 
being examined is described by the following equations : 

)$’ =1 21% (a - y) - P, x” = v2 (y - x) + sin Z, Y>O G.1) 

. 
Y+ = - Ry_', TJ -= 0 (1.2) 

y =3 y’ = 0, x”== -v2z + sin ‘d, G (t) z v2x - P < 0 0.3) 

Here (1.1) are the equations of impact-free motions, (1.2) are the equations of the shock 
interactions, (1.3) are the equations of the possible state of the kinematic connection 

between mass m, and the barrier. By ?I_‘, y+’ we denote the values of the dimension- 
less velocity y’ before and after, an instantaneous impact with a recovery factor 

RE IO, 1). 
The system’s phase space, formed by the coordinates 5, 6, z, y, y’, is five-dimen- 

sional. Since in the equations of motion the variable z occurs explicitly only as the 
argument of a 2n -periodic function, we identify the hyperplanes z = const differing 
by 2nn (n is an integer). In the case of oscillations in a model with collisions the 
representative point iI!2 (y, y’, x, x’, x), moving in the region y > 0 of the phase 
space, at some instant z0 hits onto the impact interaction halfsurface II (y = 0, Y’ < 
0) at a point M0 (0, y;, x0, zb, z,) , where 

y; = y_’ (z,), xg = 5 (To), x; = 5’ (z,) (1.4) 

Thereupon, it is instantaneously transferred in accordance with law (1.2) onto the half- 
surface y = 0, 9’ > 0, whence it goes into the region y > 0 until at an instant Z* 

* > An analogous conclusion has been made on the basis of an experimental study of the 
dynamics of a vibrating hammer in [5]. 
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it once again hits onto TI at point M, (0, yl*, xl, x1*, z,). The point mapping M, = 
2’ (~~) , generated by such motions, of the halfburface II into itself is determined by 
an integration of differential equations (1.1) with initial conditions (1.4) and can be 
represented by the following system of transcendental relations : 

v2& sin (a, + z,) - ‘19Pg (‘To + qJ2 + r1 + r200 + r3cos ocTo + (1.5) 

r&n ame = 0 

~UJ; - V~~~COS (~3, + ro) + Pg (CT, + 2,) - r, + 0 (r&n wcr, - 

rp cos wtO) = 0 

(p - 9).&n (a, + TO) + P I”i2g (o, + 2J2 - W21 - 
rI - r,oO + p(r3cos am0 + r,sinocr, t zi) = 0 

(Jo - v2)e co5 (o, + TO) + Pg (0, + TO) - r, - 
l.4 [CO (r&n woo - r&OS woo) + 2,‘1 = 0 

Hem 
g = p /(II + p), 69 = v2 /g, E = 1 I(1 - w2) 

r1 = g [2, - P (p-1w2 - “/z202) + sin ToI 
r2 = g (x0* - Rpyo' 4 PZ, -i- CO.5 7,) 

f3 = g (Pp-1w-2 - 8 sin rt, - X0) 

rg = -go-” (X0+ + Ry,’ + EGOS z,) 

of_) I- t, - to is the smallest simple positive root of the first equation in (1.5). 

2, Dstfvrtfon of ths rqurtioas for the boundrry of the region 
of sliding motions. When the representative point hits at instant r. onto the 
sheet If, of sliding motions, situated on the halfsurface fI between the manifold y’-= 0 
and a certain boundary Fs, its subsequent motion takes place by an infinite alternating 
sequence of impact - impact-free segments of the phase trajectory and ends at the 
exit point M, (0, 0, x,, 2,*, z,). 

In the autonomous version of system (1.1) - (1.3), namely, F = 0 with P, = P, = 0 

the question of an infinite-impact interaction of a two-mass system with a stop has been 
treated in [6] (for the case Y,’ - m’) and in Example 3 in [I]. 

As the number i of collisions grows, the intervals oi = li+i - Zi decrease, and the 
phase trajectory of the sliding regime approximates the trajectory, defined by relations 
(1.31, of the motion of a model with a superimposed kinematic constraint [2]. Here 
the necessary condition y” < 0 for the sliding regime differs all the less from condi- 
tion,written in the same way,for the motion of a system in a kinematic constraint 
state (inequality (1.3) ). Keeping the mentioned peculiarity in mind, a sliding regime 
can be idealized, at the expense of choosing its starting instant z, with any degree of 
accuracy as the motion of a system with a superimposed kinematic connection between 
mass miand a fixed barrier after an absolutely inelastic interaction [l, 21. Such a me- 
thod permits us to approximate M, by a phase point corresponding to the termination 
of the model’s motion in accordance with Eqs. (X.3), and, ~o~eque~tly, to determine 
the coordinates of the exit point from the conditions 
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From (2. l), as a result of integrating differential equation (1.3) with initial conditions 
(1.4). we have the dependencies 

‘PO z P - v2 [(z, - a sin TO) cos vhO + a sin (t, + ha)] - (2.3) 
v (~a* - a co.9 TO) sin vha = 0 

. 
5, = v (a sin To - ~a) sin vhO + (x,’ - a cos .6J cos vhO + (2.4) 

a cos (a, + ha) = 0, a = (v” - I)-’ 

for finding the remaining coordinates z,*, T,. Here ha = ‘6, - z,, is the duration of 
the sliding state, defined as the smallest positive root of Eq. (2.3). satisfying the condi- 
tion 2,. > 0. The transformation M, -+ M, generated by relations (2.2) - (2.4) is 
denoted by S. 

On the boundary manifold rS, according to [l], the quantities o0 and h, are connec- 

ted by the equality 
o0 = Oh, (2.5) 

where the sliding state duration factor 0 is a known function of fi. Equation (2.5) 

together with (2.3) and the first equation in (1.5) impose an additional constraint on 
the coordinates of point M o and, by the same token, permit us to determine in the first 

approximation the boundary rS of the region of existence of the sliding regimes. Re- 

fined approximations to rS can be obtained by examining the inverse point mappings 
T-k (IV,), as was done, for example, in fl]. Here only the number of the collision taken 
from the start of the sliding state, is shifted each time. 

3. Equrtfons of the fixed point. The sliding regime terminates at the 
exit point. The succeeding motion is effected along the phase trajectory, issuing from 
the exit point of impactless motions up to the instant ‘6’ of next arrival of the trajectory 
on the halfsurface II at the point M’ (0, I/*‘, x’, x”, ‘f). Relations 

‘vj= 0, i=l,2,3,4 (3.1) 

for computing the quantities y”, x’, x”, oS = r’ - 7, coincide notationwise with 

the corresponding Eqs. (1.5) and are obtained from them by replacing the indices 0 and 
1 by index s and a prime, respectively, in the phase coordinate notation. If M’ E II, 
and M’ = M,, i.e. 

y" z.zz * 
yo, 5’ = x0, 5” = x0*, t’ = T,, (mod 2~~12) (3.2) 

then the motion of the model being examined is, on the whole, periodic and n-fold. 
As is well known, the study of periodic processes reduces to the investigation of the 

fixed point of an appropriate point transformation. It is evident that a fixed point M, 
of the approximating product ST of transformations corresponds to the motion being 
considered having a range of the sliding regime in the first approximation of the ideali- 
zation adopted. By introducing the notation y*‘, x*, x*‘, rt*, for the coordinates of 
the fixed point fif, satisfying equalities (3. Z), we obtain the following system of equa- 
tions : 

v% sin r+ - ‘12 Pg (2nn + r*)’ + a, + aao-‘B + (3.3) 

a3 cos p + a, sin /3 = 0 

V2& cos “* - Pg (2nn + 5*) + a2 - py*’ - 
w (a3 sin p - a, cos f3) = 0 
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(P - v”) 8 sin z* i_ P [‘lag (2nn + z*)” - w21 - 

a1 - WJ-"B + p k* f a, cos fi + a4 sin @) = 0 

p fs,’ - w (aa sin fi - a, cos fi)l +- fp - v”) e CoS rg -/- 

Pg (2~6 + z.J - aZ = 0 
v2 [(cc, - a sin ‘6+) cos vh* + a sin %,I + 

v (2,’ - a cos z*) - P = 0 

for determining them from relations (2.3), (2.4). (3.1). Here 

a1 - g [P(v-2-- p-‘w-’ t_ ‘,&z,‘) $- sin ts] 

% = $7 (x,*’ + Pz, + cos T,), h, = z, - 2* 
a3 = g [P (p-%0-* - v-*) - 8 sin rc,] 
a* = - gca-l (x,*’ + E cos z,), p = 0 (2nn - h,) 
X' s* = (X*'-- acosz,)cos vh, - v (5+ - a sin zo) sin vh, $ a cos 2, 

4, Exfttaace and stability of perfodicf motfoer with a rlfdfng 
regtmt trags, Under a continuous variation of parameters the fixed point ITLf,, 
and, consequently, the periodic motion with a sliding regime range, vanishes : (a) when 
the existence and stability conditions are violated, (b) because of the disoontinuities in 
the point transformation ST, (c) as a #nsequen~ of the point M, going onto the 
boundary of the region II, of sliding motions. We examine the cases listed in detail. 

a) The limit value of the inequality 

where 2 is a root of the ~hara~teri~~~ equation X (z) = 0, corresponds to a degenera- 
tion of the existence and stability conditions. Setting up the determinant 

(i = 0, I,& 3,4) 

1. f.. . . . , * *. . *. . . * .*, *_, , . . . I., 

and expanding it at the point A!l*, after simpli~ing manipulations we obtain the second- 
order characteristic equation in the following parametric form : 

Here 
aoz2 -+ a,2 + a2 = 0 

a 0= - py*', a, = (py*' -t_ x**) IS v sin vh$ - 

gtj - cos B)cos vh*l - [S cos vh* + g (1 - cos j3) v-l sin v&l - 
i.~y.+’ (vu-l (&I +. sin $!) sin vk, - ig (p-l + cos jQ +. 1lcosvJz*) 

a2 = gio-l(y +v%*- sin a*) (p cos p - sin p)]- 

gyx* (p + p--l + 2 cos fi i_ @ sin @), 6 = go-’ (6 - sin fi> 

y = (p - v”) p-1 E sin z* - 

g IPp-’ + 6J (5,*’ + F cos zs> sin fi + (P $ m2 8 sin rs) cos #II 
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As is well known, the stability region is delineated by the following conditions, equiva- 
lent to inequality (4.1): 

I a2 I< Ia0 I, 1% I< I% ta2l (4.2) 

In the’limit, relations (4.2) together with (3.3) determine the bifurcation N-surfaces of 
existence and stability. 

b) A violation of the continuity of the point transformation ST is connected with 

the appearance at a certain instant z* c (rS, ‘6.J of an additional interaction of mass 
ml with the fixed barrier. The boundary surface C associated with such a degeneracy 

is determined by the analytic conditions of tangency of the phase trajectory with the 

halfsurface n 
?I (t*) = 0, y’ (7*) = 0 

Thus, the system of equations of manifold C consists of (3.3), (4.3). In developed form 
the right-hand sides of equalities (4.3) coincide, to within the notation for the instant 

of tangency, with the expressions for ‘pi and (02. 

C) Finally, a degeneracy of infinite-impact periodic motions in the oscillations 
of a system with a finite number of impacts over a period [l, 71 takes place on the last 
part of the boundary surfaces, e. g., the manifolds C, The equations of connection bet- 

ween the parameters, which together with (3.3) define the boundary C,, are obtained 
from relations (1.5). (2.3). (2.5). written in the coordinates of the fixed point, as the 
limit condition A!, E r, of the constraint M, E TI,. 

The construction of the boundaries of the region of existence of stable periodic mo- 
tions with a sliding regime range in the space of parameters Y, P, p, R was carried out 
by means of a numerical investigation of the corresponding equations. The required 

values of coefficient 0 were determined both from the approximate relations in [l] 

as well as from the exact formula for the linear law of variation of y” (‘6) at the terminal 
stage of the sliding state 

03 _ 502 j- 50 + (1 - R)(20 - 3) = 0, 0 E (0,11 (4.4) 

This is a limit dependency for the asymptotic representation of 0 Cl] and follows 

directly from the conditions of existence of the invariant curve y’ = yST2(yS = @ 

(0 - 3) / 6R) for the corresponding point mapping ( * ). 
Figures 1, 2 show individual sections L), of the region of existence and stability of 

single (n = 1) periodic motions on surfaces v = const, ~1 = const. Boundaries 
I--1 (Fig. 1) were constructed for v = O.$) and for the following values of p: 1 
for p = 5, 2 for p = 2, 3 for p = 1, 4 for p = 0.4. The boundary manifolds 
5-8 (Fig. 2) correspond to the parameter value sets: 5 for Y = 0.8, p = 1; 6 
for v = 0.8, p = 0.4; 7 for v = 0.7, p = 0.4; 8 for v = 0.7, p = 0.2. 
The existence and stability boundaries are delineated by the shading ; here the segment 
shaded twice is a part of the N-boundary not depending on 11. For the actual values 
of v and p the section D, is the region contained between the corresponding N-bound- 
aries and the manifold C,S (the thin lines). In the cases being considered the curves C 
do not occur in the composition of the boundaries of the existence and stability regions. 

In Fig. 1 the dashed lines show the boundaries of the existence region for p = 5 : 

l ) Relation (4.4) can be obtained also from the equations of motion for a boundary pro- 
cess in the generating approximation [8]. 
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No, Nan, C,. As P varies #ntinuo~ly from N, to Na, the sliding state time h, 
grows from zero to 2n. However, as we see from the graph,a significant part of the exis- 
tence region is eliminated because of loss of stability, Thus, it follows Born the results 
obtained thar stable periodic motions with a sliding state part can be realized in suffi- 
ciently large regions of the parameter space, expanding as ~1 decreases and as v -+ 1; 

in the latter case the sections D, aee displaced upwards along the P-axis. In contrast 

to models with one degree of freedom a part of the existence regions in two-degrees 
systems can be cut off by the stability boundaries for oscillations of the type being ex- 
amined. 

Fig. 1 Fig. 2 

By virtue of the approximations, justified in [ 11, for an infinite-shock converging pro- 
cess we see that in the first approximation the dynamic characteristics of the periodic 
motions with a sliding regime range do not depend on A. Thus, when calculating and 
designing two-mass shock-oscillatory systems under conditions of changing values of 
the velocity recovery factor, an oscillatory mode of the type studied can be assigned as 

the law of motion in order to ensure the stability of the operation. 
The basic results obtained in this paper were verified by simulating the equations of 

motion of system (1.1) - (1.3) on an electronic computer, which permitted us to restrict 
ourselves to solving the problem in the first approximation. 

In conclusion the author acknowledges M. I, Feigin for attention to the work. 
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We consider the complete system of equations for the dynamics of a synchro- 

nous machine with two windings on the rotor. We indicate the conditions under 

which the original system of equations can be reduced to the equation of mo- 
tion of the rotor. The conditions for rotor selfoscillations to arise are determ- 
ined as a result of investigating this equation. The complete system of equa- 

tions for the dynamics of a synchronous machine containing equations describ- 
ing the electrical responses and equations for the rotor’s mechanical motion 

are obtained in [l]. Transient responses in electric circuits were investigated 
next, as was the expression for the electromechanical moment under a constant 
rotation velocity of a rotor with one circuit, e. g., field winding. However, in 

many of the later works the electrical equations were used only for finding the 
electromechanical moment under a constant spin rate of the rotor, and the prob- 
lem was then reduced to the study of the equation for the rotor’s mechanical 
motion [Z, 31. Here the conditions for which such an analysis is admissible 

were not mentioned. It was established that the swinging of a synchronous 
machine’s rotor can be revealed in the form of selfoscillations. Vlasov [4] 
has investigated the equation of motion of a rotor and, under the assumption 
of a small parameter in the first derivative term, has found the conditions for 
the excitation of selfoscillations. Investigation in this same direction was car- 
ried out in [5]. However, in the investigation of the selfoscillations Vlasov 
did not examine the responses in the electrical circuits, while the expression 
for the electromechanical moment was obtained from power considerations . 
Other works have used particuiar expressions for the electromechanical mo- 
ment, which can not explain the selfoscillation phenomenon. 

1. Equations for rynchronoua mrchine dynamics. The equations 
for the dynamics of a salient-pole synchronous machine with two rotor windings - the 


